RESEARCH PROJECT DESCRIPTION

PROJECT NUMBER:
00476

PROJECT TITLE:
Modification of the Alabama Uniform Traffic Accident Report Form (AUTAR) and Supporting Studies

PRINCIPAL INVESTIGATORS:
Allen Parrish
Department of Computer Science
The University of Alabama
Box 870290
Tuscaloosa, AL 35487-0290
(205) 348-3749
(205) 348-0219 (fax)
parrish@cs.ua.edu

David B. Brown
Computing and Information Division
Engineering Research Laboratory
The University of Alabama
Box 870290
Tuscaloosa, AL 35487-0290
(205) 348-6364
(205) 348-0219 (fax)
brown@cs.ua.edu

Brandon Dixon
Department of Computer Science
The University of Alabama
P O Box 870290
Tuscaloosa, AL 35487-0290
(205) 348-0597
(205) 348-0219 (fax)
dixon@cs.ua.edu

David Cordes
Department of Computer Science
The University of Alabama
P O Box 870290
Tuscaloosa, AL 35487-0290
(205) 348-1671
(205) 348-0219 (fax)
cordes@cs.ua.edu
PROJECT OBJECTIVE:
The first logical step in implementing the State’s traffic safety strategic plan is to revise and update the Alabama Uniform Traffic Accident Report (AUTAR). This project will organize the teams necessary for this revision, draft update material, and perform the necessary systems studies to determine optimal approaches to computerize the form for in-vehicle data entry and uploading of information to central data files.

PROJECT ABSTRACT:
Crash records are used for multiple purposes, including safety studies. Complete and accurate crash data improves such studies, leading to better problem identification, countermeasure development, countermeasure evaluation, and program implementation. The current traffic records system in Alabama is nearly 20 years old. Data elements, data acquisition methods, and data processing technology have become outmoded. A few examples can illustrate why enhancements are needed.

Data Elements – A good example is the SUV vehicle, which was not even in existence when the current records system was designed, so no SUV data is captured in Alabama crash records. It is impossible to determine whether SUVs are over-represented in crashes in Alabama, or whether they cause a disproportionate number of serious injuries when the hit other vehicles.

Initial Data Entry – In many other states, data entry is accomplished quickly via in-auto computer screens. In Alabama, law enforcement officers capture the data in written form in the field, usually transfer it to an AUTAR form later when they return to their offices, and mail the form to Montgomery where it is input to a computer data file. This involves three separate data entry steps, which is time consuming and provides three opportunities for errors to occur.

There are many other examples of items that need to be addressed to improve the efficiency and accuracy of data capture, processing and use.

PROJECT TASK DESCRIPTIONS:
1. Develop updated AUTAR form.
2. Demonstrate project initiation and management (pilot test).
3. Perform systems studies on local data entry computer requirements.
4. Perform systems studies for network and database requirements for data uploading.
5. Produce Alabama Traffic Accident Facts.

MILESTONES AND DATES:
• Begin project – December 14, 2000
• Task 1 – 19 months to complete.
• Task 2 – 24 months to complete, to start concurrently with Task 1.
• Task 3 – 24 months to complete, to start concurrently with Tasks 1 and 2.
• Task 4 – 24 months to complete, to start concurrently with Tasks 1-3.

TOTAL BUDGET:
Two-year project: Alabama Department of Economic and Community Affairs $298,496.

STUDENT INVOLVEMENT:
Two Graduate Research Assistants and multiple undergraduate students will be involved in conducting this project.

RELATIONSHIP TO OTHER RESEARCH PROJECTS:
This project is not directly related to any UTCA projects, but it supports several that are involved in improving traffic safety in Alabama.

TECHNOLOGY TRANSFER ACTIVITIES:
Tasks 1 and 2 will involve development of training materials for the revised AUTAR and for data entry. Law enforcement personnel will be trained in each of the pilot test locations.

POTENTIAL BENEFITS OF THE PROJECT:
This project will produce a significant improvement in traffic crash data quality, and in the efficiency of data capture and data use. The degree of improvement is not quantifiable in advance of implementation, but by comparison with similar projects in place in sister states, it is clear that this project will provide additional optimization of safety funding, and will consequently decrease crashes, injuries and fatalities.

TRB KEYWORDS:
Traffic safety programs, traffic crash records, traffic records systems, traffic data capture, data automation